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ABSTRACT 23 

This study develops a fully automated lightning jump system encompassing objective storm tracking, 24 

Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important 25 

elements in the transition of the LJA concept from a research to an operational based algorithm.  Storm cluster 26 

tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, 27 

VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked 28 

features or storm clusters had a large impact on the lightning jump system performance, where increasing 29 

spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also 30 

serve as a means to refine the LJA itself to enhance its operational applicability.  Parameters within the system 31 

are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s 32 

performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics.  Of 33 

the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold 34 

influenced the system’s performance the most. Finally, verification methodologies are investigated. It is 35 

discovered that minor changes in verification methodology can dramatically impact the evaluation of the 36 

lightning jump system. 37 

 38 

 39 

1. Introduction 40 

 41 

 Previous research has shown that rapid increases in lightning activity are highly correlated to the 42 

occurrence of severe weather using lightning data from available three-dimensional lightning networks 43 

throughout the United States.  Analysis by Williams et al. (1999), Schultz et al. (2009), and Gatlin and 44 

Goodman (2010) demonstrate the correlation between rapid increases in total flash rate (i.e., "lightning 45 
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jumps") and severe weather occurrence.  Furthermore, recent studies (Schultz et al. 2009, Gatlin and 46 

Goodman 2010, Schultz et al. 2011) have quantified the lightning jump based on statistical performance 47 

metrics including probability of detection (POD) and false alarm ratio (FAR). Schultz et al. (2009, 2011) 48 

presented strong performance results (79% POD, 36% FAR) using total lightning from lightning mapping 49 

arrays (LMAs) to aid in the prediction of severe and hazardous weather using an objective lightning jump 50 

algorithm (LJA) with semi-automated tracking on a large number of storms. Schultz et al. (2009) developed 51 

and tested 4 different LJA configurations and determined that the 2σ algorithm (sigma-level of 2; see 52 

Schultz et al. 2011 section 2c) had the best skill in nowcasting severe weather potential.  53 

However, Schultz et al. (2009, 2011) and others lack full automation and semi-objective tracking 54 

techniques that are needed for operational usage of the LJA. In addition, these previous studies have not 55 

taken advantage of adding satellite based products to that of commonly used radar based products. Rudlosky 56 

and Fuelberg (2013) used objective tracking techniques, but also lacked full automation. Chronis et al. 57 

(2015) also used objective and automatic tracking techniques to understand how performance metrics for 58 

the lightning jump change using real-time datasets. However, all of these studies arrived at their conclusions 59 

from LMA datasets and did not account for or anticipate what the Geostationary Lightning Mapper (GLM) 60 

will observe once in orbit on the GOES-R satellite (Goodman et al. 2013). Proch (2010) is the only previous 61 

study to use the LMA derived GLM proxy data. He used storms from the Schultz et al. (2009) database to 62 

evaluate the LJA with GLM proxy data. His results showed a lower sigma-level and lower flash rate 63 

threshold might be needed to optimize the algorithm for severe weather detection with GLM proxy data. 64 

Therefore, the goal of this study is to develop a fully automated framework encompassing objective 65 

tracking, GLM proxy lightning data, and the LJA to build toward operational assessment of storm intensity 66 

in real-time. This framework will also serve as a means to refine the LJA itself to enhance its operational 67 

applicability.  This paper will describe the methodology involved with establishing this fully automated 68 

system and discuss how adjustments to parameters within various parts of the system affect the overall 69 

performance. In section 2, we will describe the components of the lightning jump system and illustrate the 70 



 

 3 

automated, objective tracking methodology including how this differs from past research, which solely 71 

relied on radar information for tracking. The components of the LJA will be described including the 72 

parameters involved in sensitivity testing. Finally, verification methodology will be addressed as an 73 

additional method of assessing the system’s performance. Section 3 will examine the sensitivity tests 74 

performed and the influence individual and combined parameters had on the LJ system. Section 4 will 75 

summarize the key influences on the system’s performance and look forward to future research and 76 

considerations. 77 

 78 

2. Data and methodology 79 

 80 

The lightning jump system consists of three components: radar and lightning data, thunderstorm 81 

tracking, and the LJA. Each component plays a vital role in the automation of the LJA towards operational 82 

use. The database for this study includes over 90 event days consisting of up to 10001 storm clusters between 83 

the years of 2002 and 2011 within 125 km range of the North Alabama Lightning Mapping Array 84 

(NALMA) network center (Fig. 1; Table 1). This dataset is a significant subset of the event days included 85 

in Schultz et al. (2011).  Storm clusters are included in the database if they have a minimum lifetime of at 86 

least 30 minutes while the cluster is within 125 km of the center of NALMA. Only the portion of the cluster 87 

track that is within the domain is included in the dataset.  Unlike previous studies that subjectively select 88 

storms on each event day to include in the database, this study includes all identified storms that meet the 89 

tracking criteria as identified by the tracking methodology discussed in section 2b. 90 

 91 

a. Radar and lightning data 92 

 93 

1) RADAR 94 

                                                 
1 The number of storm clusters is dependent upon the tracked feature size.  
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 95 

For each event day, NEXRAD Level II radar data for the five radars (KHTX, KGWX, KOHX, KFFC, 96 

KBMX) closest to the NALMA center are merged and gridded (0.009° x 0.009° x 1km resolution; Fig. 2b) 97 

using the Warning Decision Support System – integrated information (WDSSII; Lakshmanan et al., 2006, 98 

Lakshmanan et al., 2007). While previous studies have used reflectivity based thresholds for thunderstorm 99 

tracking (35 dBZ at -15°C, Schultz et al. 2009), this study uses vertically integrated liquid (VIL) in 100 

combination with lightning data. VIL is calculated from the merged and gridded radar data following the 101 

same methodology for single radar quality control and multi-radar blending as the national Multi-Radar 102 

Multi-Sensor (MRMS) system at the National Centers for Environmental Prediction (NCEP) and provided 103 

to the National Weather Service (NWS) in real-time (Smith et al. 2016).  104 

 105 

2) LIGHTNING DATA: GLM PROXY DATA 106 

 107 

Previous implementations of the LJA involved ground-based datasets which use three-dimensional 108 

LMA data and have not included observations from a satellite based sensor. The challenge is that an optical 109 

lightning detection instrument does not currently exist at geostationary orbit. Furthermore, optical 110 

instruments like GLM observe a different component of lightning than the LMA (optical radiances at cloud 111 

top vs. VHF observations). This study uses GLM proxy data generated from NALMA data (Bateman 2013). 112 

The GLM proxy data converts NALMA flashes into what a “best guess” is that GLM will see when in orbit.  113 

The GLM proxy data set accomplishes this by using flash statistics collected from the space-borne 114 

Lightning Imager Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM; Kummerow et 115 

al. 1998) and the NALMA (Bateman et al. 2008). Like the GLM, the LIS records optical events which are 116 

grouped into flashes (Mach et al. 2007), whereas the LMA detects VHF electromagnetic radiation sources 117 

which are combined into flashes using a separate clustering algorithm (McCaul et al. 2009). An example 118 

of a visual comparison for a flash between the LIS and LMA is shown in Fig. 3. Essentially, the GLM proxy 119 
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flashes are transformed to match the lower spatial resolution of the GLM (compared with NALMA). This 120 

causes some “smearing out” and some merging of NALMA flashes but the overall flash rate is basically 121 

unchanged. The GLM proxy data algorithm creates “proxy pixels” and the flash-clustering software 122 

converts these into “proxy flashes”.  Using this intercomparison methodology, the GLM proxy flashes are 123 

composed of merged LMA 15% of the time. In other words, there are roughly 15% fewer GLM proxy 124 

flashes than LMA flashes. Each GLM proxy flash location is determined by the amplitude-weighted 125 

centroid of the groups/events. GLM proxy flashes are gridded to a 0.08° x 0.08° grid which approximates 126 

GLM resolution and 1 and 5 minute flash count total grids (FLCT1 and FLCT5) are calculated each minute 127 

to produce flash rate density products (FRD).  128 

 129 

3) VILFRD 130 

 131 

This study extends beyond traditional utilization of radar parameters to track storm features and 132 

combines lightning data with VIL to compute a new trackable quantity. VIL and the 5-minute average GLM 133 

proxy FRD (FLCT5; Fig. 2a) products are combined to track storm clusters within the WDSSII framework.  134 

These products are combined as seen in Equation 1 to produce a new product, aptly named, VILFRD (Fig. 135 

2c).  136 

𝑉𝐼𝐿𝐹𝑅𝐷 = 100 × [(
𝑉𝐼𝐿

45
≤ 1) + √

𝐹𝐿𝐶𝑇5

45
≤ 1]   (1) 137 

The VILFRD formula is subjectively determined in order to have a trackable product that relies more on 138 

radar-based information when flash rates are low and then transitions to more weight applied towards 139 

lightning information when flash rates are high. These two components inside the brackets each are limited 140 

to a maximum value of one resulting in maximum VILFRD values of 200. The maximum limits are set to 141 

treat anything larger than moderate VIL values (~45 kg m-2) the same as this indicates a strong 142 

thunderstorm. In addition, flash rates of 45 flashes min-1 or greater are also indicative of a strong 143 

thunderstorm. While an in-depth comparison between the two tracking methods mentioned (radar vs. radar 144 



 

 6 

and lightning) has not been completed with this dataset, initial observations place added value to the 145 

addition of lightning information compared to radar tracking alone as it increased the consistency of 146 

tracking a storm’s core and updraft region.  This agrees with results from Meyer et al. (2013) which uses 147 

radar and lightning data to track storms. Lightning and lightning jumps are physically related to the storm’s 148 

updraft (e.g., Schultz et al. 2015) and thus the combination of radar and lightning information provides the 149 

tracking system a product that is weighted towards the most intense part of the storm cluster. 150 

 151 

b. Thunderstorm tracking 152 

 153 

To compute lightning time histories for jump identification, it is necessary to utilize an automated, 154 

objective tracking scheme to assign lightning flashes to individual storms. VILFRD is tracked using K-155 

means clustering in w2segmotionll in WDSSII (Lakshmanan et al. 2009). WDSSII w2segmotionll is used 156 

to track features where VILFRD values are ≥ 20, at increments of 20.  Any pixel with a value greater than 157 

100 is assigned the value of 100. Clusters are built outward from a local maximum until a minimum size or 158 

spatial scale threshold is met (Table 2) with a maximum overlap approach (combining cells within 5km of 159 

the cell boundary) for associating cells from one time step to the next. Cells are not included that are not 160 

tracked at each time step. The WDSSII tracking included 8 scales (scales 0 to 7) however, only scales 1 161 

through 6 are included as scale 0 and scale 7 are unusable as the extremely small and large area parameters, 162 

respectively, failed to produce output for the vast majority of cases. The scales used are tracked at 40, 80, 163 

120, 160, 200, and 300 pixels. The exact area scale thresholds in Table 2 account for the fact that a pixel is 164 

less than 1 km2.  Figure 4 depicts two example clusters used to help describe this tracking method. VILFRD 165 

values are denoted by different colors. If VILFRD values ≥ 100 (red in Fig. 4) meet the required minimum 166 

area of a spatial scale threshold, a cluster is identified and the algorithm moves on to other clusters during 167 

that time step. If not, the algorithm reduces the VILFRD threshold to the value of 80 and searches for 168 

clusters that meet the minimum area of the spatial scale threshold.  The VILFRD threshold continues to 169 
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reduce in increments of 20 until it reaches a floor VILFRD value of 20. If the VILFRD feature footprint at 170 

the level of 20 does not reach the minimum area of a spatial scale threshold, no cluster is identified at the 171 

time and location. For example, a feature at scale 5, minimum required area is 162 km2 (Table 2), would be 172 

represented as the area included in D (VILFRD ≥40) in Cluster 1 and as area included in B (VILFRD ≥40) 173 

for Cluster 2. 174 

The result of this iterative identification technique is that tracked clusters will differ in area and lifetime 175 

at each spatial scale. Each individual cluster is given a unique cluster identification number during its 176 

lifetime. Individual clusters at a select time are shown as an example in Fig. 2d. Outside of WDSSII, 177 

“broken tracks” are objectively merged if a WDSSII cell begins at t+1 within 15 km of where a previous 178 

track ended at time t. Time histories are tied together for merged cells. 179 

 180 

c. Lightning Jump Algorithm 181 

 182 

The LJA as defined by Schultz et al. (2009) laid the foundation for this study. In their studies, Schultz 183 

et al. (2009, 2011) objectively identified lightning jumps using the “2σ” algorithm.  Figure 5 diagrams the 184 

flow chart depicting the following five steps describing the LJA process for the “2σ” threshold.  185 

1)   The total lightning flash rate (as calculated from the 1 minute GLM proxy FRD) from the time 186 

period, t, is binned into 2 minute time periods and averaged. 187 

2)   The time rate of change of the total flash rate (DFRDT) is calculated by subtracting consecutive bins 188 

from each other (i.e., bin2-bin1, bin3-bin2,… bint-bint-1).  This results in DFRDT values with the units 189 

of flashes min-2. 190 

3)   The standard deviation of the 5 previous DFRDT values is calculated.  Twice this standard deviation 191 

value determines the level for the current DFRDT to exceed to be classified a jump in the 192 

“2σ”algorithm. 193 
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4)   Taking the ratio of the current DFRDT value to the standard deviation of the previous 5 time periods 194 

(Step 3) is further referred to as the sigma-level. Thus, a previously defined 2σ jump would have a 195 

sigma-level of 2.  This presentation allows the end user to have the ability to understand how a 196 

current increase in the total flash rate compares to other recent increases in the storms total flash 197 

rate.  For instance, a sigma-level of 8 would indicate a more rapid increase in the flash rate than a 198 

sigma-level increase of 2.  This extra information directly corresponds to the kinematic and 199 

microphysical growth of the storm leading up to the time of the lightning jump and can aid in the 200 

forecaster’s warning decision making process (Schultz et al. 2015). 201 

5)   In addition to reaching the required sigma-level to determine a jump, the following must also be met 202 

for the original approach to the algorithm: the minimum spin-up time of 14 minutes is reached (6 203 

time periods to achieve 5 DFRDT values plus the current time period), the current flash rate exceeds 204 

the flash rate threshold of 10 flashes min-1, and the classification of an individual jump ends once 205 

the sigma-level drops below 0. 206 

5)   This process is repeated every two minutes as new total lightning flash rates are collected until the 207 

storm dissipates. If a jump is currently in progress, the jump is continued until the sigma-level drops 208 

below 0. In the event multiple jumps occur within 6 minutes of each other, only the first jump 209 

remains for verification to follow the original Schultz et al. (2009) verification methodology (Table 210 

3).  211 

 212 

d. Parameter sensitivity testing 213 

Seven parameters (Table 1) within the lightning jump system have been identified as having potential 214 

impact on the performance of the LJA. A range of values for sigma-level threshold, flash rate threshold, 215 

spin-up time, severe storm report distance, verification window, domain range, and spatial scale are used 216 

to determine which parameters the algorithm is the most sensitive to and what those values are. With the 217 

initial development of the LJA, Schultz et al. (2009) tested a 2σ and 3σ configuration of the LJA and 218 
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determined that the 2σ version produced more optimal skill scores when the 10 flashes min-1 flash rate 219 

threshold is implemented.  Based on the Schultz et al. (2009) findings, the 2σ configuration is tested further 220 

in Schultz et al. (2011). This study expands upon the LJA configuration results from Schultz et al. (2009, 221 

2011) and further exploration by Chronis et al. (2015) through further sensitivity testing of the sigma-level 222 

threshold by varying the sigma-level from 0.75 to 2.5 in 0.25 increments (Table 1).  Furthermore, a range 223 

of flash rate thresholds (1, 5, 10, 15, and 20) are tested in order to determine the algorithm sensitivity (Table 224 

1).  The minimum time required for the spin-up of the algorithm is 14 minutes (12 minutes to calculate the 225 

sigma-level, 2 additional minutes to determine if a lightning jump has occurred; Section 2c).  226 

Tunable parameters that are investigated within the verification framework are severe storm report 227 

distance and verification window. Severe storm reports are obtained from NOAA’s National Climatic Data 228 

Center’s (NCDC) Storm Data and used as ground truth for validation. Storm Data has known temporal and 229 

spatial errors in reporting of events and known underreporting in data sparse regions (e.g., Witt et al. 1998, 230 

Williams et al. 1999, Trapp et al. 2006, and Chronis et al. 2015), so effort is taken to mitigate small timing 231 

and spatial errors that may exist in the database. This mitigation includes an additional “buffer” space 232 

around the footprint of a tracked storm cluster at each time step to assign reports to specific clusters. Storm 233 

report distance is defined as the maximum distance from the storm cluster’s footprint edge that a storm 234 

report can be associated with that storm. This distance is set to 5 km (Table 1). The verification window 235 

starts at the occurrence of a jump and lasts for 45 minutes (Table 1). Reports that occur within this 236 

verification window are used to verify the jump. For the results shown within, these parameters remained 237 

constant as initial sensitivity testing showed less impact to the overall system performance than other 238 

parameters. 239 

Finally, two parameters are used to ensure quality and define the database. The domain range is limited 240 

to the areal coverage of the LMA network (Fig. 1). The closer the lightning activity is to the network, the 241 

higher the detection efficiency (Koshak et al. 2004). Therefore, extending the domain can decrease the 242 

detectable flashes and flash rates that can have an effect on the classification of jumps. A default distance 243 
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is chosen as 125 km to remain in close proximity to the LMA network, which is used to statistically generate 244 

the GLM proxy data. Only portions of the storm life cycle (inclusion of entire storm’s footprint determined 245 

by the storm’s centroid location) occurring for at least 30 minutes within 125 km of the center of the LMA 246 

network are included in this study. The variance in spatial scale introduced in this study is a result of the 247 

options available in w2segmotionll in WDSSII to track features at different areal extents. Six different 248 

spatial scales (Table 2) are chosen ranging in sizes from that of small thunderstorms (scale 1 at 32 km2) to 249 

that of larger storm clusters (scale 6 at 243 km2). These values serve as the benchmark storm size for the 250 

sensitivity testing of the LJA. 251 

 252 

e. Verification 253 

 254 

The verification methodology initially applied in this study closely reflects the methodology outlined 255 

in Schultz et al. (2009). In order to evaluate the lightning jump system, severe storm reports are used as 256 

ground truth validation. As mentioned in Section 2d, there are caveats with using NCDC Storm Data. In an 257 

attempt to mitigate these effects, a temporal clustering of reports (same type) in 6 minutes bins is 258 

implemented. This binning begins at the time of the first report.  Any report grouped into this bin counts as 259 

a single event and the time of the first report within the group is used for any calculations. 260 

The window for jump verification is the time window (default length of 45 minutes; Table 1) starting 261 

at the time of the jump.  However, in the method outlined by Schultz et al. (2009), only one jump can be 262 

evaluated at a given time. As mentioned in Section 2d, jumps are grouped if they occur within 6 minutes of 263 

each other (3 consecutive time periods). This leaves open the potential for additional jumps to occur within 264 

the verification window (after the 6 minute grouping) of a previous jump. In these cases, initial or “first” 265 

jumps and subsequent or “second” jumps are denoted as shown in Fig. 6. Each jump has a verification 266 

window equal to that of the verification window parameter, which is 45 minutes for this study. The first 267 

jump is verified and a “hit” (defined as the number of storm report groups within the verification window) 268 
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if a storm report occurs during the verification window as denoted by the green vertical bar at approximately 269 

10 minutes in Fig. 6. A second jump’s verification window, however, is limited to the time period remaining 270 

following the expiration of the first jump’s verification window. For example, if the second jump started 271 

30 minutes after the first, its verification window would begin 15 minutes later (considering a 45 minute 272 

verification window) leaving a 30 minute verification window for the second jump. This can be visualized 273 

in Fig. 6. Despite what reports exist within the 15 minute overlap of the two jumps (minutes 30 to 45 or 274 

example report at approximately 40 minutes), the second jump is classified as a false alarm if no reports 275 

are present for the remaining 30 minutes (minutes 45 to 75). This methodology is applied for any additional 276 

jumps. 277 

In order to evaluate the algorithm, the skill scores of POD and FAR (Wilks 2011, 310-311) are 278 

calculated. In this process, a hit is defined as the grouped severe storm reports that occur during a 279 

verification window of a jump within the set bounds around a storm cluster (based on the radius from the 280 

edge of the cluster’s footprint).  A miss is defined as a severe storm report group that occurs outside of a 281 

verification window. A false alarm is defined as a jump that is not followed by any severe storm reports 282 

within the associated verification window as well as the qualification involving subsequent jumps as 283 

described in the previous paragraph. 284 

Verification methodology from Schultz et al. (2009, 2011) is not equivalent to that of the methodology 285 

employed by the National Weather Service (NWS) storm warning verification (NWS 2011). The main 286 

difference that exists between these two is the grouping of severe storm reports and the false alarm 287 

classification for subsequent jumps. A side by side comparison of these two methodologies can be seen in 288 

Table 3. Unlike Schultz et al. (2009), the NWS validates each warning separately even if they overlap. 289 

However, reports in the overlapping region only count as a single hit and not a hit for each warning.  In an 290 

effort to more closely compare our results to the techniques used by the NWS, we included what we will 291 

call an alternative (in reference to Schultz et al. 2009) verification method. The discussion of our results 292 
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will use both of these verification methods to evaluate the LJA algorithm and analyze sensitivity within the 293 

tunable parameters listed in Table 1.  294 

 295 

3. Results 296 

 297 

Numerous iterations of tunable parameter combinations (Table 1) are processed through the lightning 298 

jump system, analyzed, and evaluated using the skill score metrics of POD and FAR. The sensitivity 299 

analysis revealed the level of influence that individual parameters and parameter combinations have on the 300 

system performance. In addition, the verification methodology notably affected evaluation of the lightning 301 

jump system. The key results shown are the influence of spatial scale used in storm cluster tracking, the 302 

effect of sigma-level and the flash rate threshold on the LJA, and the impact verification methodology has 303 

on these results.  304 

 305 

a. Spatial scale 306 

 307 

One component of the tracking methodology is choosing a representative storm scale size. However, 308 

storm size and appropriate scale size can greatly vary depending on storm mode. Scales ranging in areal 309 

size from scale 1 at 32 km2 to scale 6 at 243 km2 (Table 2) are tested.  Figure 7 shows cluster footprints for 310 

all six scales discussed in this study at a given time (same date/time as Fig. 2). This figure depicts the 311 

similarities and differences inherent to the different tracking scales.   Most notably different is cluster A on 312 

the left-hand side of the figures, which varies drastically in size from scale 1 to scale 6. Cluster B, remains 313 

the same size throughout the different scales. This consistent size is most likely due to a strong, active 314 

lightning core within this thunderstorm as can be noted by the influence of the lightning contribution to 315 

VILFRD as seen in Fig. 2a, b, and c.  316 
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Figure 8 shows a color-coded comparison between the 6 different spatial scales that are used by 317 

WDSSII to track storm clusters. Each symbol represents one iteration of the algorithm for all event days 318 

for a given set of parameters. Larger spatial scales show increased POD values due mainly to the large areal 319 

extent of the storm clusters’ footprints. Quantitative evidence of this is shown in Tables 4 and 5. These 320 

larger areal extents allow for the inclusion of more lightning flashes and thus higher flash rates. Over 37 321 

percent of time steps in the scale 6 database have flash rates over 20 flashes min-1. At the lower spatial 322 

scales, the flash rates often do not reach the minimum flash rate threshold (default of 10 flashes min-1). This 323 

is true for 87 percent of time steps for the entire scale 1 database. In contrast, only 22 percent of time steps 324 

at scale 6 have total flash rates below 10 flashes min-1. In scale 1, 4.5 percent of the database reaches a 325 

sigma-level of 2 but are not calculated as jumps because the flash rate is below 10 flashes min-1. Not meeting 326 

the minimum flash rate threshold prevents the LJA from activating and leads to any event occurring within 327 

the areal bounds set for that storm to be considered a miss. This causes both an increase in the number of 328 

misses and a decrease in the relative amount of hits as compared to larger scales and thus, leads to lower 329 

POD values in the smaller scales. POD values increase from a range of 0.19 to 0.88 at scale 1 to 0.44 to 330 

0.97 at scale 6 (due to a variance of other parameters). The range of FAR values between scales shows less 331 

spread than POD. The range of values decreases with increasing spatial scales, from a range of 0.5 to 0.91 332 

at scale 1 to 0.63 to 0.86 at scale 6.  333 

During early investigation of the interplay between spatial scale and storm tracking, it is found that 334 

smaller scales are more ideal for isolated, small-scale thunderstorms as they are easier for the tracking 335 

algorithm to separate. Larger scales are more ideal for more complex and larger storms such as supercells. 336 

The larger scales are less likely to split apart a cluster that would naturally be considered as one entity 337 

although it may consist of multiple updrafts. In order to evaluate flash rate threshold and sigma-level, an 338 

optimal scale needs to be selected. Scale 5 (minimum areal size of 162 km2) is selected based on the balance 339 

of a high number of verified jumps per cluster (0.3, Table 5) with fewer missed events per cluster (0.26, 340 

Table 5). Scale 5 also balances the penalty of increasing FAR as it increases less than the POD increases 341 
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with larger scales.  While all scales 1 through 6 are explored in this research, scale 5 is fixed for analysis 342 

and comparisons shown here within.   343 

 344 

b. Algorithm parameters: Flash rate threshold and sigma-level 345 

 346 

Compared to all the tunable parameters listed in Table 1, the combined effect of the flash rate threshold 347 

and sigma-level show the most promise in improving the LJA performance as evaluated by POD and FAR. 348 

The POD and FAR values for the sigma-level and flash rate thresholds for the Schultz et al. (2009) and 349 

alternative verification methods are shown in Figs. 9 and 10, respectively. The Schultz et al. (2009) 350 

verification methodology (Fig. 9) shows that decreasing sigma-level values (cooler colors) and lowering 351 

the flash rate threshold (symbols) results in the POD increasing slightly more than the increasing FAR. The 352 

POD and FAR are strongly coupled with a linear correlation coefficient of 0.95. In order to help break down 353 

the individual effects of sigma-level and flash rate towards POD and FAR, a linear regression model is 354 

applied at each constant sigma-level or flash rate.  The trends of the slope of the linear regression models 355 

show that as the sigma-level decreases, the effect of flash rate become more pronounced (slope or rate of 356 

change of 0.88 at 2.5 sigma-level and 0.57 at 0.75 sigma-level). These slopes help reveal a smaller increase 357 

in FAR values with increasing POD values. 358 

The overall effect of sigma-level and flash rate threshold on the algorithm with the alternative 359 

verification (Fig. 10) shows a decoupled POD-FAR relationship (R2=0.20).  This is noted by little change 360 

in the FAR and an increase in the POD with decreasing sigma-level values. In addition, decreasing the flash 361 

rate threshold leads to an increase in FAR and POD with FAR increasing at a slightly lower rate of change 362 

than the POD. The addition of more storms meeting the low flash rate requirements allow for jumps to be 363 

calculated (whereas the algorithm would not be initialized at higher flash rates) and more storm reports to 364 

be counted as potential hits. Linear regression analysis while holding the sigma-level constant reveals linear 365 

regression fits (or slopes) of 0.99 (at 0.75 sigma-level) to 0.59 (at 2.5 sigma-level). This quantifies the 366 
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coupled effect flash rate threshold has on the POD-FAR relationship at low sigma-level values and the 367 

decoupling of this relationship with increasing values of the sigma-level. Thus, the sigma-level contributes 368 

to the overall decoupled POD-FAR relationship with the alternative verification. 369 

 370 

c. Verification methodology 371 

 372 

Two similar yet different verification methodologies are explored for this study.  Figure 11 shows the 373 

spread of the verification methodology established in Schultz et al. (2009; black) and the alternative 374 

verification method (red) for all spatial scales. As mentioned, the Schultz et al. (2009) verification shows 375 

how closely coupled the relationship is between POD and FAR. The alternative method of verification 376 

shows improved performance of the LJA system on the order of reducing the FAR by 20% while 377 

maintaining a high POD. This is most likely due to the reduced amount of subsequent jumps classified as 378 

false alarms in Schultz et al.’s methodology (Table 4). 379 

Figure 12 shows a comparison of the two methodologies for an individual cluster track. The difference 380 

comes in the classification of a jump that occurs during the verification window of a previous jump. The 381 

difference between the two methodologies is evident in the fourth jump or jump D. Under the methodology 382 

in Schultz et al. (2009), jump D is a false alarm because the severe events that follow jump D are also in 383 

the verification window of jump C. If an event is reported after the verification window of the previous 384 

jump then jump D would be a hit or verified jump in the Schultz et al. methodology.  Jump D is a hit, or 385 

verified jump, in the alternative verification because that method removes the restriction of only allowing 386 

one jump to be verified at a given time. While false alarms and hits will be different between the two 387 

methodologies due to the reasons discussed above, the number of misses remain constant as no jumps are 388 

created or removed that could increase or reduce the number of misses. 389 

 390 

4. Discussion and summary 391 
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 392 

Storm tracking is a challenging aspect of research at the storm scale.  Previous tracking methodologies 393 

have involved radar reflectivity thresholds, radar reflectivity at specific temperature thresholds, satellite 394 

features, etc. This study has taken a new, unique approach and combined VIL and gridded lightning flash 395 

rate density to develop a trackable product.  This product, VILFRD, helps track the portions of the storm 396 

where relevant ice production and lightning activity are occurring to focus on the intense portions of the 397 

storm.  Most importantly, this method of utilizing lightning information in addition to radar derived 398 

parameters lays groundwork for future methods of tracking storms by lightning in the absence of radar 399 

information (e.g., over oceans, in terrain where radars encounter blockage).  This type of tracking is 400 

potentially game changing from the perspective of GOES-R.  With GOES-R, the community will have the 401 

ability for hemispheric tracking of storm systems with the added lightning capabilities of GLM, providing 402 

additional information on the intensity of storms not only over land, but also in data sparse regions.  403 

One of the key points of this study is the testing of various spatial scales in storm tracking. Table 2 404 

documents these various scales. As is noted, results differed based on spatial scale. A large part of this 405 

result is the inability for the lightning flash count within the smaller spatial scales to reach a minimum 406 

threshold. For some of the clusters in the smaller scales, the tracked feature is a more intense core within 407 

what is tracked as a larger multicell cluster at larger spatial scales. This is an advantage when trying to 408 

separate features to trackable sizes but a disadvantage when verification techniques are applied and smaller 409 

clusters perform poorly due to only covering a limited spatial area.  There has been initial research and 410 

testing into combining different scales (Herzog et al. 2014). 411 

Both sigma-level and flash rate play an important role in the lightning jump system’s ability to predict 412 

severe storms, especially based on the results shown for the Schultz et al. (2009, 2011) methodology.  413 

Recent work by Chronis et al. (2015) and Schultz et al. (2015) demonstrate both empirically and physically 414 

how these two parameters work in concert with each other and provide valuable information into the 415 

intensification of storms.   The lightning jump provides lead time on the higher flash rates that are to come, 416 
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and higher flash rates are physically and dynamically tied to the development and manifestation of severe 417 

weather at the surface. There are notable differences in skill scores between this study (~60% POD and 418 

~73%) and Schultz et al. (2011; 79% POD and 35% FAR) despite using the same event days from the 419 

Tennessee Valley.  The most obvious difference between the two studies is in the number of cluster/storms.  420 

The automated tracking employed in this study identified more storm clusters in the same event database 421 

at each spatial scale (Table 1) than the 555 storms identified in Schultz et al. (2011).  Another key difference 422 

is the lightning data input.  In general, the GLM proxy data has fewer number of flashes identified than the 423 

full LMA dataset used in Schultz et al. (2011).  When the alternative methodology is applied, the sigma-424 

level influences the performance of the algorithm to a larger extent than the flash rate threshold. Decreasing 425 

the sigma-level will increase the number of jumps and will increase the likelihood of event detection 426 

(increase in POD). In the alternative methodology, the algorithm is not penalized the same as the Schultz 427 

et al. methodology for repetitive or subsequent jumps that overlap with previous jump forecasts. Therefore, 428 

this increase in jumps does not increase FAR. In actuality, the FAR decreases with decreasing sigma-level 429 

because the added number of jumps associated with a lower sigma-level threshold are not penalized for 430 

overlapping.  431 

For both verification methodologies, the increase of the flash rate threshold reduces the number of 432 

jumps.  In turn, this change decreases FAR (jumps are not identified until they reach a higher flash rate) 433 

and POD because many severe events are counted as missed events due to no jump or forecast being issued. 434 

The change in FAR and POD are most notable at smaller spatial scales.  Flash rate threshold changes, 435 

independent of sigma-level, weakly influences the skill score metrics more using the Schultz et al. 436 

verification methodology. 437 

Finally, it is important to determine how this LJA system can be applied to real-time operations utilizing 438 

hemispheric lightning coverage with GOES-R GLM, as the launch of GOES-R approaches,. The LJA is 439 

shown to add value in the operational forecasting paradigm from a satellite, hemispheric perspective (e.g., 440 

Darden et al. 2010). Allowing forecasters the ability to evaluate the LJA through tracked clusters color-441 
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coded by sigma-level, as seen in the Hazardous Weather Testbed (HWT; Calhoun et al. 2014), also allows 442 

for individual assessment of the variations of sigma-level presented in this and other studies. Tracking 443 

methodologies also can greatly impact the usability of any algorithm including the LJA, as is shown by this 444 

study. This study has shown that the best results are achieved when there is balance between small and 445 

large feature tracking methods. Scale 5 (162 km2 or about 13 x 13 km cluster size) exhibited this balance 446 

and is just smaller than that used by the HWT tracking used for real-time lightning jump evaluation.  447 

This work summarizes a technique that combines radar and lightning information to track 448 

thunderstorms to assess storm intensity for operational weather applications.  Validation using Storm Data 449 

shows that key components of the algorithm (flash rate and sigma-level thresholds) have the greatest 450 

influence on the performance of the algorithm.  The analysis of the lightning jump system using GLM proxy 451 

data has shown POD values around 60% with FAR around 73% using similar methodology to Schultz et 452 

al. (2011) which had a POD of 79% and a FAR of 36%.  However, when applying verification methods 453 

similar to those employed by the National Weather Service, POD values increase slightly (69%, range of 454 

35-95%) and FAR values decrease (63%, range of 48-66%). These results show the POD and FAR are 455 

highly correlated (R2=0.95) in the Schultz et al. verification but not in the alternative verification (R2=0.20). 456 

This evaluation also highlights the sensitivity of the algorithm’s evaluation based on verification 457 

methodologies involving storm reports.   458 
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TABLES AND FIGURES 523 

 524 

Table 1. Comparison of the tunable parameters in the LJA, verification, and database used in Schultz et al. 525 

(2011) and this study. 526 

 527 

  528 

Tunable Parameter 
Schultz et al. 

2011 
This study 

Sigma-level threshold  

(statistical jump threshold) 
2.0 

0.75, 1.0, 1.25, 

1.5, 1.75, 2.0, 

2.25, 2.5 

Flash rate threshold 

Minimum flash rate (flashes min1) required to activate 

the algorithm 

10 1, 5, 10, 15, 20 

Algorithm spin-up 

Minimum time required to determine a jump 
14 minutes 14 minutes 

Storm report distance 

Additional distance from cell boundary 

0 (Only area 

within cell) 
5 km 

Verification window 

Time following a jump 
45 minutes 45 minutes 

Domain range 

From NALMA center 

200 km (most 

within 

150 km) 

125 km 

Spatial scale 

Based on WDSSII tracking parameters 
60 km2 See Table 2 
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Table 2. Spatial scale levels with minimum area required to track storm clusters using WDSSII, and 529 

average storm track duration, length, and cluster size. 530 

 531 

Spatial 

Scale 
~Area (km2) 

Track 

Duration 

(hrs) 

Track 

Length 

(km) 

Cluster Size 

(km2) 

1 32 1.003 42.57 122.77 

2 65 1.032 44.80 175.57 

3 97 1.028 44.89 224.91 

4 130 1.046 46.55 270.32 

5 162 1.039 47.15 318.23 

6 243 1.042 48.55 443.37 

  532 
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Table 3. A comparison of verification methodologies between the method used in Schultz et al. (2009, 533 

2011) and a method aligning with the National Weather Service. 534 

 535 

 536 

537 

Verification 

Methodologies 

Verification 

Schultz et al. 2009, 2011 

Alternative Verification 

(Based on NWS, NWS-

HUN personal 

communication) 

Storm report grouping Yes (6 minutes) No 

1 storm report verifies 2 

overlapping forecasts 

No (only first forecast, 1 hit) Yes (1 hit) 

Jump grouping Yes (6 minutes) Yes (6 minutes) 

False alarm • No report during forecast OR 

• For overlapping forecasts, no 

report in time period 

following first forecast 

expiration 

No report during forecast 
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Table 4. Total scale attributes using the Schultz et al. verification and alternative verification 538 

methodologies. 539 

 540 

Scale Clusters Jumps 
False 

Alarms 
Hits Misses 

Alt. 
False 

Alarm  

Alt. 
Hits 

1 1377 505 378 200 330 344 276 

2 1121 724 567 233 311 519 323 

3 978 949 760 274 259 705 279 

4 842 1044 858 285 219 801 387 

5 737 992 769 295 194 725 430 

6 583 851 665 291 169 608 410 

  541 
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Table 5. Normalized scale attributes by number of clusters using the Schultz et al. and alternative 542 

verification methodologies. 543 

 544 

Scale Jumps Hits 
False 

Alarms 
Misses 

Verified 

Jumps 

Alt. 
False 

Alarms 
Alt. Hits 

1 0.37 0.15 0.27 0.24 0.09 0.25 0.20 

2 0.65 0.21 0.51 0.28 0.14 0.46 0.29 

3 0.97 0.28 0.78 0.26 0.19 0.72 0.29 

4 1.24 0.34 1.02 0.26 0.22 0.95 0.46 

5 1.35 0.40 1.04 0.26 0.30 0.98 0.58 

6 1.46 0.50 1.14 0.29 0.32 1.04 0.70 

  545 
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 546 

 547 

Figure 1. A diagram of the study’s domain and instrumentation locations. The large rectangle (green dot-548 

dash lines) indicates the domain used in the WDSSII storm tracking algorithms. The red circle indicates the 549 

area within 125 km of the center of the NALMA. This is the area used for lightning jump system sensitivity 550 

testing and verification. The blue triangles represent NALMA sensors and the black boxes represented 551 

NEXRAD radar locations.  552 

553 
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 554 

 555 

Figure 2. a) 5-min GLM proxy gridded flash density, b) merged composite reflectivity, c) VILFRD, and 556 

d) tracked storm clusters at scale 5 at 1945 UTC on 10 Apr 2009. e) Top panel: Lightning flash rate time 557 

series for cell 32 with the timing of lightning jumps depicted by green (hit) and red (false alarm) vertical 558 

lines, light gray flash rate (i.e., 1730-1815 and 2120-2230) depicts the time the cluster is outside of the 125 559 

km LMA range.  Bottom panel: Cluster footprint with storm reports (green = hit, red = miss) for the LJA 560 

from 1730-2230.   561 
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 562 

 563 

Figure 3. A comparison of the spatial differences of an example flash between an optical observation from 564 

the TRMM-LIS (blue/gray pixels) and the VHF radiation from the North Alabama LMA (gray source 565 

points) on 5 June 2006. Each LIS flash location is determined by the amplitude weighted centroid of the 566 

groups/events. The LMA flash consist of clustered radiation sources recorded at 80 µs intervals along the 567 

path of the flash.  568 
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 569 

Figure 4. Schematic of two example storm clusters used to describe the VILFRD cluster identification and 570 

tracking process at multiple scales.  Scale 1: Left – Cluster A (40 km2), Right – Cluster A1 (35 km2) Cluster 571 

A2 (38 km2). Scale 3: Left – Cluster B (100 km2). Scale 4: Left – Cluster C (150 km2). Scale 5: Left – 572 

Cluster D (200 km2), Right – Cluster B (200 km2). Scale 6: Left – Cluster E (300 km2), Right – Cluster C 573 

(300 km2).  574 
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 575 

 576 

Figure 5. Flowchart for the lightning jump classification process using the “2σ” algorithm from Schultz et 577 

al. (2009).  578 
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 579 

 580 

Figure 6. A schematic of respective verification windows for two lightning jumps (red and orange boxes). 581 

Following the verification methodology found in Schultz et al. (2009), only one jump can be verified at a 582 

given time with the given example storm reports (vertical green rectangles). Therefore, Jump 2 is not able 583 

to validate until after Jump 1’s verification period has ended. The black outlines indicate the valid time 584 

period for each jump.  585 
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 586 

Figure 7. Cluster footprint comparisons for scale 1 (upper left) to scale 6 (lower right) at 1945 UTC on 10 587 

Apr 2009, same time shown as Figure 2. Storm A is blue and the same as cluster 88 in Fig. 2d. Storm B is 588 

in orange and cluster 32 in Fig. 2d.  Storm reports are plotted with the red square representing a missed 589 

wind report.  590 
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 591 

 592 

Figure 8. FAR vs. POD comparison of the 6 spatial scales (areal extent). Color represent the spatial scale 593 

at which storms are tracked and symbols represent flash rate thresholds for the Schultz et al. (2009) 594 

verification methodology. Each symbol represents one iteration of the algorithm for all event days for a set 595 

of given parameters.  596 
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 597 

 598 

Figure 9. FAR vs POD comparisons using the Schultz verification methodology showing the relationship 599 

of sigma-level (color) and flash rate threshold (symbols) on the algorithm’s performance at spatial scale 5. 600 

Flash rate threshold of 1 (diamond) and 5 (asterisk) flashes min-1 are very similar at each sigma-level and 601 

may be difficult to discern.  A linear regression analysis (y=0.52x+0.40) for these data resulted in a strong 602 

correlation between POD and FAR (R2=0.95).  A linear regression analysis while holding each sigma-level 603 

constant resulted in R2=0.99 and slopes ranging from 0.57 (at 0.75 sigma-level) to 0.88 (at 2.5 sigma-level).  604 
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 605 

 606 

Figure 10. FAR vs POD comparisons using the alternative verification method showing the relationship of 607 

sigma-level (color) and flash rate threshold (symbols) on the algorithm’s performance at spatial scale 5. A 608 

linear regression analysis (y=0.16x+0.48) for these data resulted in almost no correlation between POD and 609 

FAR (R2=0.20).  A linear regression analysis while holding each sigma-level constant resulted in correlation 610 

values above 0.9 (R2=0.93 to 0.99) and slopes ranging from 0.99 (at 0.75 sigma-level) to 0.59 (at 2.5 sigma-611 

level).   612 
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 613 

 614 

Figure 11. A complete dataset distribution, from all ranges of sensitivity testing, showing for FAR vs POD 615 

comparisons of the differences between the verification Schultz et al. (2009; black) and alternative (red) 616 

verification methodologies.  617 
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 618 

 619 

Figure 12. Similar to Fig. 2e except a comparison of verification methodology for a single example case. 620 

The top half of the figure shows Schultz et al. (2009) verification methodology and the bottom half shows 621 

the alternative verification methodology applied. The key difference is the classification of the fourth jump 622 

(jump D) as a false alarm in the top image and a hit in the bottom image. 623 


